EMCal-RICH level1 trigger performance at PHENIX

Kensuke Okada
(RIKEN Wako, Saitama, Japan)
for the PHENIX collaboration

EMCal-RICH trigger

Trigger for high pT γs h[±]s electrons

Physics

- $\bullet \Delta G$ from A_{LL} (of direct γ , $\pi^0 \rightarrow 2\gamma$, h^{\pm})
- $\bullet \Delta q/q$ with W production asymmetry (W $\rightarrow ev$)
- $\bullet \Delta G$ from charm production asymmetry(charm $\rightarrow e \nu X$)
- •pQCD test through $A_N(\pi^0 \rightarrow 2\gamma, h^{\pm})$
- Comparison data for Heavy Ion collision $(\pi^0 \to 2\gamma, h^{\pm}, J/\psi \to ee)$

pp run in run2 ('01Dec~'02Jan)

Rejection power requirement in run2

averaged trigger rate : ~20kHz (max 75kHz)

DAQ bandwidth: ~1kHz (200Hz assigned to this trigger)

→ factor 100 was needed

Concept of EMCal-RICH trigger

PHENIX central arm 2 types of EMCal (PbSc, PbGl)

 $\gamma(\pi^0)$: EMCal

Electron: EMCal and RICH

h[±] : EMCal and RICH (through hadronic interactions)

DNP Oct12/2002 Kensuke Okada (RIKEN)

EMCal trigger

$$E_{MCal}$$
 to_{Wer} 5.25*5.25 e_{m} P_{bGl} to_{Wers} P_{bGl} to_{Wers} P_{bGl} to_{Wers} P_{bGl} to_{Wers} to_{Wers}

Trigger Performance Check

◆ Turn on curve (important for the rejection power)

♦ Live ratio

Trigger Turn On Curve

Turn on width comes from 2 places.

- ◆ PMT gain variation
- ◆ Trigger circuit

EMCal PMT gain variance

PbGl has better shape than PbSc.

Both of them have some very off gain PMT.

(Some of them were not used in the last plots as a offline mask)
DNP Oct12/2002 Kensuke Okada (RIKEN)

Trigger turn on curve for ADC value

To reject gain variance effect. Only circuit "noise" appears.

Rejection Power of EMCal Trigger

compared to the MC simulation with sharp turn on.

4x4 has low rejection power than expectation because of wide turn on curve.

Live Ratio

Dead area mainly came from hot channel mask
Unit= super module (SM)

~75% is alive

Need to be investigated for RUN3.

Profits in Various Channels

RICH trigger

Structure

4x5 PMT is the unit. total 256 tiles.

Turn on curve

Live ratio

38tiles (14.8%) in run2
Bad parts are already fixed for RUN3

Summary

EMCal-RICH trigger was newly installed at PHENIX RUN2.

EMCal trigger

~75% worked properly

Turn on curve width came from PMT gain variance and trigger circuit.

Statistical gain of π^0 , h^{\pm} , J/ψ

RICH trigger

~15% of RICH trigger units worked properly.

For the next run (RUN3 January, 2003):

Luminosity : $\sim 20 \times RUN2$

DAQ ability: $\sim 5 \times$

We will be in severer condition.

- raise the live ratio
- ◆ EMCal-RICH coincidence
- reduce the turn on width